How To Find The Surface Area Of An Oblique Cylinder

    Back to Articles Open The Calculator    

Finding the surface area of an oblique cylinder involves using its radius and slant height. This guide will provide a step-by-step process to determine the surface area using a specific formula.


Step 1: Show the Surface Area Formula

The formula for the surface area \(SA\) of an oblique cylinder is:


\[ SA = 2 \cdot \pi \cdot r \cdot (h_s + r) \]


Where:

- \(r\) is the radius of the base of the cylinder.

- \(h_s\) is the slant height of the cylinder.


Step 2: Explain the Formula

In this formula:

- \(2 \cdot \pi \cdot r \cdot h_s\) represents the lateral surface area of the oblique cylinder.

- \(2 \cdot \pi \cdot r^2\) represents the area of the two circular bases.


The total surface area is the sum of the lateral surface area and the area of the two bases.


Step 3: Insert Numbers as an Example

Let's consider an oblique cylinder with:

- Radius \(r = 4\) units

- Slant height \(h_s = 9\) units


Step 4: Calculate the Final Value

First, we substitute the values into the formula:


\[ SA = 2 \cdot \pi \cdot 4 \cdot (9 + 4) \]


Next, we simplify inside the parentheses:


\[ SA = 2 \cdot \pi \cdot 4 \cdot 13 \]


Now, multiply the numbers:


\[ SA = 2 \cdot \pi \cdot 52 \]


\[ SA = 104 \cdot \pi \]


For \(\pi \approx 3.14\):


\[ SA \approx 104 \cdot 3.14 \]


\[ SA \approx 326.56 \, \text{square units} \]


Final Value

The surface area of an oblique cylinder with a radius of 4 units and a slant height of 9 units is approximately 326.56 square units.

Report
Reply

Cookie Policy

PLEASE READ AND ACCEPT OUR COOKIE POLICY.